Weighted Reduced Order Methods for Uncertainty Quantification in Computational Fluid Dynamics

Julien Genovese, Francesco Ballarin, Gianluigi Rozza, Claudio Canuto

Risultato della ricerca: Contributo in libroChapter

Abstract

In this manuscript we propose and analyze weighted reduced order methods for stochastic Stokes and Navier-Stokes problems depending on random input data (such as forcing terms, physical or geometrical coefficients, boundary conditions). We will compare weighted methods such as weighted greedy and weighted POD with non-weighted ones in case of stochastic parameters. In addition we will analyze different sampling and weighting choices to overcome the curse of dimensionality with high dimensional parameter spaces.
Lingua originaleEnglish
Titolo della pubblicazione ospiteReduction, Approximation, Machine Learning, Surrogates, Emulators and Simulators: RAMSES
Pagine127-151
Numero di pagine25
DOI
Stato di pubblicazionePubblicato - 2024

Serie di pubblicazioni

NomeLECTURE NOTES IN COMPUTATIONAL SCIENCE AND ENGINEERING

Keywords

  • Reduced basis

Fingerprint

Entra nei temi di ricerca di 'Weighted Reduced Order Methods for Uncertainty Quantification in Computational Fluid Dynamics'. Insieme formano una fingerprint unica.

Cita questo