Weighted Reduced Order Methods for Parametrized Partial Differential Equations with Random Inputs

Francesco Ballarin, Luca Venturi, Davide Torlo, Gianluigi Rozza

Risultato della ricerca: Contributo in libroChapter

Abstract

In this manuscript we discuss weighted reduced order methods for stochastic partial differential equations. Random inputs (such as forcing terms, equation coefficients, boundary conditions) are considered as parameters of the equations. We take advantage of the resulting parametrized formulation to propose an efficient reduced order model; we also profit by the underlying stochastic assumption in the definition of suitable weights to drive to reduction process. Two viable strategies are discussed, namely the weighted reduced basis method and the weighted proper orthogonal decomposition method. A numerical example on a parametrized elasticity problem is shown.
Lingua originaleEnglish
Titolo della pubblicazione ospiteUncertainty modeling for engineering applications
Pagine27-40
Numero di pagine14
DOI
Stato di pubblicazionePubblicato - 2019

Serie di pubblicazioni

NomePOLITO SPRINGER SERIES

Keywords

  • weighted reduced order models
  • uncertainty quantification

Fingerprint Entra nei temi di ricerca di 'Weighted Reduced Order Methods for Parametrized Partial Differential Equations with Random Inputs'. Insieme formano una fingerprint unica.

Cita questo