Vector Equilibrium Problems with Generalized Monotone Bifunctions

Monica Bianchi, N. Hadjisavvas, S. Schaible

Risultato della ricerca: Contributo in rivistaArticolo in rivista

212 Citazioni (Scopus)


A vector equilibrium problem is defined as follows: given a closed convex subset K of a real topological Hausdorff vector space and a bifunction F(x, y) valued in a real ordered locally convex vector space, find x*∈K such that F(x*, y) ≮0 for all y∈K. This problem generalizes the (scalar) equilibrium problem and the vector variational inequality problem. Extending very recent results for these two special cases, the paper establishes existence of solutions for the unifying model, assuming that F is either a pseudomonotone or quasimonotone bifunction.
Lingua originaleEnglish
pagine (da-a)527-542
Numero di pagine16
RivistaJournal of Optimization Theory and Applications
Stato di pubblicazionePubblicato - 1997


  • Pseudomonotone bifunctions
  • Quasimonotone bifunctions
  • Vector equilibrium problems


Entra nei temi di ricerca di 'Vector Equilibrium Problems with Generalized Monotone Bifunctions'. Insieme formano una fingerprint unica.

Cita questo