Abstract
In this paper a uniqueness theorem for classical solutions is proved in the case of the evolution of a nanofluid filling a bounded domain under the Boussinesq approximation. The mass density of the nanofluid depends on the temperature and on the nanoparticle volume fraction. A decay in time of a suitable energy is achieved assuming that the material parameters satisfy some conditions. These results are then generalized in the presence of a magnetic field.
Lingua originale | English |
---|---|
pagine (da-a) | 563-578 |
Numero di pagine | 16 |
Rivista | International Journal of Applied Mathematics |
Volume | 32 |
DOI | |
Stato di pubblicazione | Pubblicato - 2019 |
Keywords
- Boussinesq approximation
- Nanofluid
- Uniqueness result