Type II chain graph models for categorical data: a smooth subclass

Federica Nicolussi, Roberto Colombi

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

1 Citazioni (Scopus)

Abstract

The Probabilistic Graphical Models use graphs in order to represent the joint distribution of q variables. These models are useful for their ability to capture and represent the system of independence relationships among the variables involved, even when complex. This work concerns categorical variables and the possibility to represent symmetric and asymmetric dependences among categorical variables. For this reason we use the Chain Graphical Models proposed by Andersson, S.A. et al. (2001), also known as Chain Graphical Models of type II (GMs II). The GMs II allow for symmetric relationships typical of log-linear models and, at the same time, asymmetric dependences typical of Graphical Models for Directed Acyclic Graphs. In general, GMs II are not smooth, however this work provides a subclass of smooth GMs II by parameterizing the probability function through marginal log-linear models. Furthermore, the proposed model is applied to a data-set from the European Value Study for the year 2008 EVS (2010).
Lingua originaleEnglish
pagine (da-a)N/A-N/A
Numero di pagine20
RivistaBernoulli
Volume1995-.
DOI
Stato di pubblicazionePubblicato - 2016
Pubblicato esternamente

Keywords

  • Categorical Variables
  • Chain Graph Models
  • Conditional Indipendence Models
  • Marginal Models

Fingerprint

Entra nei temi di ricerca di 'Type II chain graph models for categorical data: a smooth subclass'. Insieme formano una fingerprint unica.

Cita questo