TY - JOUR
T1 - Toward an embodied medicine: A portable device with programmable interoceptive stimulation for heart rate variability enhancement
AU - Di Lernia, Daniele
AU - Cipresso, Pietro
AU - Pedroli, Elisa
AU - Riva, Giuseppe
PY - 2018
Y1 - 2018
N2 - In this paper, we describe and test a new portable device that is able to deliver tactile interoceptive stimulation. The device works by delivering precise interoceptive parasympathetic stimuli to C-tactile afferents connected to the lamina I spinothalamocortical system. In humans, interoceptive stimulation can be used to enhance heart rate variability (HRV). To test the effectiveness of the device in enhancing HRV, 13 subjects were randomly assigned in a single-blind between-subjects design either to the experimental condition or to the control condition. In the experimental condition, subjects received stimulation with the developed device; in the control condition subjects received stimulation with static non-interoceptive pressure. Subjects’ electrocardiograms (ECG) were recorded, with sampling at 1000 Hz for 5 min as a baseline, and then during the stimulations (11 min). Time domain analyses were performed to estimate the short-term vagally mediated component (rMSSD) of HRV. Results indicated that the experimental group showed enhanced rMSSD, compared to the control group. Moreover, frequency domain analyses indicated that high frequency band power, which reflects parasympathetic activity in humans, also appeared to be enhanced in the experimental group compared to control subjects. Conclusions and future challenges for an embodied perspective of rehabilitative medicine are discussed.
AB - In this paper, we describe and test a new portable device that is able to deliver tactile interoceptive stimulation. The device works by delivering precise interoceptive parasympathetic stimuli to C-tactile afferents connected to the lamina I spinothalamocortical system. In humans, interoceptive stimulation can be used to enhance heart rate variability (HRV). To test the effectiveness of the device in enhancing HRV, 13 subjects were randomly assigned in a single-blind between-subjects design either to the experimental condition or to the control condition. In the experimental condition, subjects received stimulation with the developed device; in the control condition subjects received stimulation with static non-interoceptive pressure. Subjects’ electrocardiograms (ECG) were recorded, with sampling at 1000 Hz for 5 min as a baseline, and then during the stimulations (11 min). Time domain analyses were performed to estimate the short-term vagally mediated component (rMSSD) of HRV. Results indicated that the experimental group showed enhanced rMSSD, compared to the control group. Moreover, frequency domain analyses indicated that high frequency band power, which reflects parasympathetic activity in humans, also appeared to be enhanced in the experimental group compared to control subjects. Conclusions and future challenges for an embodied perspective of rehabilitative medicine are discussed.
KW - Affective touch
KW - Analytical Chemistry
KW - Atomic and Molecular Physics, and Optics
KW - Biochemistry
KW - C-tactile
KW - CT afferents
KW - Electrical and Electronic Engineering
KW - Heart rate variability
KW - Instrumentation
KW - Interoception
KW - Interoceptive stimulation
KW - Rehabilitative medicine
KW - Affective touch
KW - Analytical Chemistry
KW - Atomic and Molecular Physics, and Optics
KW - Biochemistry
KW - C-tactile
KW - CT afferents
KW - Electrical and Electronic Engineering
KW - Heart rate variability
KW - Instrumentation
KW - Interoception
KW - Interoceptive stimulation
KW - Rehabilitative medicine
UR - http://hdl.handle.net/10807/128819
UR - http://www.mdpi.com/1424-8220/18/8/2469/pdf
U2 - 10.3390/s18082469
DO - 10.3390/s18082469
M3 - Article
SN - 1424-8220
VL - 18
SP - 2469-N/A
JO - Sensors
JF - Sensors
ER -