Abstract
In this paper we study a generalization of the classical non-Euclidean hyperbolic geometry, without assuming for the absolute plane any condition about continuity or the Archimedes' axiom. In this general frame we extend the validity of the fundamental Three-reflection Theorems to the case of any three distinct lines which are pairwise hyperbolic parallel and have a transversal.
Lingua originale | Inglese |
---|---|
pagine (da-a) | 127-140 |
Numero di pagine | 14 |
Rivista | QUADERNI DI MATEMATICA |
Volume | Trends in Incidence and Galois Geometries: a Tribute to Giuseppe Tallini (F. Mazzocca, N. Melone and D. Olanda eds.) |
DOI | |
Stato di pubblicazione | Pubblicato - 2009 |
Keywords
- hyperbolic plane
- line-reflection