The semi-Markov beta-Stacy process: a Bayesian non-parametric prior for semi-Markov processes

Andrea Arfè, Stefano Peluso, Pietro Muliere

Risultato della ricerca: Contributo in rivistaArticolo in rivista

Abstract

The literature on Bayesian methods for the analysis of discrete-time semi-Markov processes is sparse. In this paper, we introduce the semi-Markov beta-Stacy process, a stochastic process useful for the Bayesian non-parametric analysis of semi-Markov processes. The semi-Markov beta-Stacy process is conjugate with respect to data generated by a semi-Markov process, a property which makes it easy to obtain probabilistic forecasts. Its predictive distributions are characterized by a reinforced random walk on a system of urns.
Lingua originaleEnglish
pagine (da-a)1-15
Numero di pagine15
RivistaStatistical Inference for Stochastic Processes
DOI
Stato di pubblicazionePubblicato - 2020

Keywords

  • Bayesian nonparametric
  • Beta-Stacy
  • Urn model
  • Semi-Markov
  • Reinforced processes

Fingerprint

Entra nei temi di ricerca di 'The semi-Markov beta-Stacy process: a Bayesian non-parametric prior for semi-Markov processes'. Insieme formano una fingerprint unica.

Cita questo