Abstract
The Schwinger model, defined in the space interval -L<~x<~L, with (anti)periodic boundary conditions, is canonically quantized in the light-cone gauge A-=0 by means of equal-time (anti)commutation relations. The transformation diagonalizing the complete Hamiltonian is explicitly constructed, thereby giving spectrum, chiral anomaly, and condensate. The structures of Hilbert spaces related both to free and to interacting Hamiltonians are completely exhibited. Besides the usual massive field, two chiral massless fields are present, which can be consistently expunged from the physical space by means of a subsidiary condition of a Gupta-Bleuler type. The chiral condensate does provide the correct nonvanishing value in the decompactification limit L→∞.
Lingua originale | English |
---|---|
pagine (da-a) | 3631-3645 |
Numero di pagine | 15 |
Rivista | PHYSICAL REVIEW D |
Volume | 1997 |
DOI | |
Stato di pubblicazione | Pubblicato - 1997 |
Keywords
- Schwinger model
- light cone gauge