The Riemann zeta function as an equivariant Dirac index

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

1 Citazioni (Scopus)

Abstract

Abstract. In this note an interpretation of Riemann’s zeta function is provided in terms of an R-equivariant L^2 -index of a Dirac-Ramond type operator, akin to the one on (mean zero) loops in flat space constructed by the present author and T. Wurzbacher. We build on the formal similarity between Euler’s partitio numerorum function (the S^1 -equivariant L^2 -index of the loop space Dirac-Ramond operator) and Riemann's zeta function. Also, a Lefschetz-Atiyah-Bott interpretation of the result together with a generalisation to M. Lapidus’ fractal membranes are also discussed. A fermionic Bost-Connes type statistical mechanical model is presented as well, exhibiting a “phase transition at (inverse) temperature β = 1”, which also holds for some “well-behaved” g-prime systems in the sense of Hilberdink-Lapidus.
Lingua originaleEnglish
pagine (da-a)N/A-N/A
Numero di pagine19
RivistaInternational Journal of Geometric Methods in Modern Physics
Volume9
DOI
Stato di pubblicazionePubblicato - 2012

Keywords

  • zeta function, Dirac operators, fractal membranes

Fingerprint Entra nei temi di ricerca di 'The Riemann zeta function as an equivariant Dirac index'. Insieme formano una fingerprint unica.

Cita questo