TY - JOUR
T1 - The Functional Profile and Antioxidant Capacity of Tomato Fruits Are Modulated by the Interaction between Microbial Biostimulants, Soil Properties, and Soil Nitrogen Status
AU - Ganugi, Paola
AU - Fiorini, Andrea
AU - Tabaglio, Vincenzo
AU - Capra, Federico
AU - Zengin, Gokhan
AU - Bonini, Paolo
AU - Caffi, Tito
AU - Puglisi, Edoardo
AU - Trevisan, Marco
AU - Lucini, Luigi
PY - 2023
Y1 - 2023
N2 - The application of microbial biostimulants to plants has revealed positive effects related to nutrients uptake, stress tolerance, root development and phenological growth. However, little information is available exploiting the potential synergistic biostimulant action of microbes on the functional quality of the yields. The current research elucidated the effect of single or coupled action of biostimulants, associated with either optimal or reduced nitrogen application, on the functional quality of tomato fruits. Chemical assays and untargeted metabolomics were applied to investigate Rhizoglomus irregulare and Funneliformis mosseae administration (both being arbuscular mycorrhiza, AMF), under optimal or low N input conditions, alone or coupled to Trichoderma atroviride application. The coupling of AMF and Trichoderma fungal inoculations resulted in a synergistic biostimulant effect on tomato fruits under sub-optimal fertility, revealing improved concentrations of carotenoid compounds-B-carotene (0.647 +/- 0.243 mg/100 g), Z-carotene (0.021 +/- 0.021 mg/100 g), 13-z-lycopene (0.145 +/- 0.052 mg/100 g) and all-trans-lycopene (12.586 +/- 1.511 mg/100 g), and increased values for total phenolic content (12.9 +/- 2.9 mgGAE/g), total antioxidant activity (phosphomolybdenum, 0.9 +/- 0.2 mmolTE/g), radical scavenging activity (DPPH, 3.4 +/- 3.7 mgTE/g), reducing power (FRAP, 23.6 +/- 6.3 mgTE/g and CUPRAC, 37.4 +/- 7.6 mg TE/g), and enzyme inhibitory activity (AChE, 2.4 +/- 0.1 mg GALAE/g), when compared to control. However, evidence of carotenoid and bioactive compounds were exclusively observed under the sub-optimal fertility and no significant differences could be observed between the biostimulant treatment and control under optimal fertility.
AB - The application of microbial biostimulants to plants has revealed positive effects related to nutrients uptake, stress tolerance, root development and phenological growth. However, little information is available exploiting the potential synergistic biostimulant action of microbes on the functional quality of the yields. The current research elucidated the effect of single or coupled action of biostimulants, associated with either optimal or reduced nitrogen application, on the functional quality of tomato fruits. Chemical assays and untargeted metabolomics were applied to investigate Rhizoglomus irregulare and Funneliformis mosseae administration (both being arbuscular mycorrhiza, AMF), under optimal or low N input conditions, alone or coupled to Trichoderma atroviride application. The coupling of AMF and Trichoderma fungal inoculations resulted in a synergistic biostimulant effect on tomato fruits under sub-optimal fertility, revealing improved concentrations of carotenoid compounds-B-carotene (0.647 +/- 0.243 mg/100 g), Z-carotene (0.021 +/- 0.021 mg/100 g), 13-z-lycopene (0.145 +/- 0.052 mg/100 g) and all-trans-lycopene (12.586 +/- 1.511 mg/100 g), and increased values for total phenolic content (12.9 +/- 2.9 mgGAE/g), total antioxidant activity (phosphomolybdenum, 0.9 +/- 0.2 mmolTE/g), radical scavenging activity (DPPH, 3.4 +/- 3.7 mgTE/g), reducing power (FRAP, 23.6 +/- 6.3 mgTE/g and CUPRAC, 37.4 +/- 7.6 mg TE/g), and enzyme inhibitory activity (AChE, 2.4 +/- 0.1 mg GALAE/g), when compared to control. However, evidence of carotenoid and bioactive compounds were exclusively observed under the sub-optimal fertility and no significant differences could be observed between the biostimulant treatment and control under optimal fertility.
KW - antioxidant activity
KW - carotenoids
KW - metabolomics
KW - microbial biostimulants
KW - phenolic compounds
KW - antioxidant activity
KW - carotenoids
KW - metabolomics
KW - microbial biostimulants
KW - phenolic compounds
UR - http://hdl.handle.net/10807/230999
U2 - 10.3390/antiox12020520
DO - 10.3390/antiox12020520
M3 - Article
SN - 2076-3921
VL - 12
SP - 520
EP - 536
JO - Antioxidants
JF - Antioxidants
ER -