TY - JOUR
T1 - The Dirac-Ramond operator on loops in flat space
AU - Spera, Mauro
AU - Wurzbacher, Tilmann
PY - 2003
Y1 - 2003
N2 - In this paper, a rigorous construction of the S^1 -equivariant Dirac operator (i.e., Dirac–
Ramond operator) on the space of (mean zero) loops in R^d is given and its equivariant L^2 -
index computed. Essential use is made of infinite tensor product representations of the
canonical anticommutation relations algebra.
AB - In this paper, a rigorous construction of the S^1 -equivariant Dirac operator (i.e., Dirac–
Ramond operator) on the space of (mean zero) loops in R^d is given and its equivariant L^2 -
index computed. Essential use is made of infinite tensor product representations of the
canonical anticommutation relations algebra.
KW - Dirac–Ramond operator
KW - Equivariant L^2 -index
KW - Infinite tensor products
KW - Spinors on loop spaces
KW - Dirac–Ramond operator
KW - Equivariant L^2 -index
KW - Infinite tensor products
KW - Spinors on loop spaces
UR - http://hdl.handle.net/10807/35686
U2 - 10.1016/S0022-1236(02)00178-7
DO - 10.1016/S0022-1236(02)00178-7
M3 - Article
SN - 0022-1236
VL - 197
SP - 110
EP - 139
JO - Journal of Functional Analysis
JF - Journal of Functional Analysis
ER -