TY - JOUR
T1 - The BCL2L10 Leu21Arg variant and risk of therapy-related myeloid neoplasms and de novo myelodysplastic syndromes
AU - Fabiani, Emiliano
AU - Fianchi, Luana
AU - Falconi, Giulia
AU - Boncompagni, Riccardo
AU - Criscuolo, Marianna
AU - Guidi, Francesco
AU - La Brocca, Antonella
AU - Hohaus, Stefan
AU - Leone, Giuseppe
AU - Voso, Maria Teresa
PY - 2013
Y1 - 2013
N2 - Therapy-related myeloid neoplasms (t-MNs) are an increasingly recognized complication in patients previously treated with radiotherapy and/or chemotherapy for cancer or autoimmune disease. Single nucleotide variants (SNVs) in genes involved in the cellular pathways of detoxification, DNA repair and apoptosis may modify the individual risk of developing a t-MN. We studied the frequency of the SNVs of six genes involved in xenobiotic detoxification (CYP3A4, NQO1, GSTA1, GSTM1, GSTP1 and GSTT1), two DNA repair genes (RAD51 and XRCC3) and one key regulator of apoptosis (BCL2L10) in a case-control study including 111 cases of t-MN and 259 controls. This is the first report on the prevalence of BCL2L10 Leu21Arg polymorphism in myeloid malignancies. In this line, we also tested 146 cases of de novo myelodysplastic syndrome (MDS) and 109 cases of de novo acute myeloid leukemia (AML). Our results showed a significantly lower frequency of the BCL2L10-21Arg allele in patients with t-MN and de novo MDS compared to controls (Leu/Arg + Arg/Arg: 50.6% vs. 65.9%, p = 0.017 and 45.8% vs. 65.9%, p = 0.0003, respectively). Carriers of the BCL2L10-21Arg variant have a reduced risk of developing t-MN and de novo MDS.complication in patients previously treated with radiotherapy and/or chemotherapy for cancer or autoimmune disease. Single nucleotide variants (SNVs) in genes involved in the cellular pathways of detoxification, DNA repair and apoptosis may modify the individual risk of developing a t-MN. We studied the frequency of the SNVs of six genes involved in xenobiotic detoxification (CYP3A4, NQO1, GSTA1, GSTM1, GSTP1 and GSTT1), two DNA repair genes (RAD51 and XRCC3) and one key regulator of apoptosis (BCL2L10) in a case-control study including 111 cases of t-MN and 259 controls. This is the first report on the prevalence of BCL2L10 Leu21Arg polymorphism in myeloid malignancies. In this line, we also tested 146 cases of de novo myelodysplastic syndrome (MDS) and 109 cases of de novo acute myeloid leukemia (AML). Our results showed a significantly lower frequency of the BCL2L10-21Arg allele in patients with t-MN and de novo MDS compared to controls (Leu/Arg + Arg/Arg: 50.6% vs. 65.9%, p = 0.017 and 45.8% vs. 65.9%, p = 0.0003, respectively). Carriers of the BCL2L10-21Arg variant have a reduced risk of developing t-MN and de novo MDS.
AB - Therapy-related myeloid neoplasms (t-MNs) are an increasingly recognized complication in patients previously treated with radiotherapy and/or chemotherapy for cancer or autoimmune disease. Single nucleotide variants (SNVs) in genes involved in the cellular pathways of detoxification, DNA repair and apoptosis may modify the individual risk of developing a t-MN. We studied the frequency of the SNVs of six genes involved in xenobiotic detoxification (CYP3A4, NQO1, GSTA1, GSTM1, GSTP1 and GSTT1), two DNA repair genes (RAD51 and XRCC3) and one key regulator of apoptosis (BCL2L10) in a case-control study including 111 cases of t-MN and 259 controls. This is the first report on the prevalence of BCL2L10 Leu21Arg polymorphism in myeloid malignancies. In this line, we also tested 146 cases of de novo myelodysplastic syndrome (MDS) and 109 cases of de novo acute myeloid leukemia (AML). Our results showed a significantly lower frequency of the BCL2L10-21Arg allele in patients with t-MN and de novo MDS compared to controls (Leu/Arg + Arg/Arg: 50.6% vs. 65.9%, p = 0.017 and 45.8% vs. 65.9%, p = 0.0003, respectively). Carriers of the BCL2L10-21Arg variant have a reduced risk of developing t-MN and de novo MDS.complication in patients previously treated with radiotherapy and/or chemotherapy for cancer or autoimmune disease. Single nucleotide variants (SNVs) in genes involved in the cellular pathways of detoxification, DNA repair and apoptosis may modify the individual risk of developing a t-MN. We studied the frequency of the SNVs of six genes involved in xenobiotic detoxification (CYP3A4, NQO1, GSTA1, GSTM1, GSTP1 and GSTT1), two DNA repair genes (RAD51 and XRCC3) and one key regulator of apoptosis (BCL2L10) in a case-control study including 111 cases of t-MN and 259 controls. This is the first report on the prevalence of BCL2L10 Leu21Arg polymorphism in myeloid malignancies. In this line, we also tested 146 cases of de novo myelodysplastic syndrome (MDS) and 109 cases of de novo acute myeloid leukemia (AML). Our results showed a significantly lower frequency of the BCL2L10-21Arg allele in patients with t-MN and de novo MDS compared to controls (Leu/Arg + Arg/Arg: 50.6% vs. 65.9%, p = 0.017 and 45.8% vs. 65.9%, p = 0.0003, respectively). Carriers of the BCL2L10-21Arg variant have a reduced risk of developing t-MN and de novo MDS.
KW - AML
KW - therapy-related
KW - AML
KW - therapy-related
UR - http://hdl.handle.net/10807/50503
U2 - 10.3109/10428194.2013.845885
DO - 10.3109/10428194.2013.845885
M3 - Article
SN - 1042-8194
SP - 1538
EP - 1543
JO - Leukemia and Lymphoma
JF - Leukemia and Lymphoma
ER -