Abstract
We show that all $2A$-Majorana representations of the Harada-Norton group $F_5$ have the same shape. If ${\mathcal R}$ is such a representation, we determine,
using the theory of association schemes, the dimension and the irreducible constituents of the linear span $U$ of the Majorana axes. Finally, we prove that, if ${\mathcal R}$ is based on the (unique) embedding of $F_5$ in the Monster, $U$ is closed under the algebra product.
Lingua originale | English |
---|---|
pagine (da-a) | 175-187 |
Numero di pagine | 13 |
Rivista | Ars Mathematica Contemporanea |
Volume | 11 |
Stato di pubblicazione | Pubblicato - 2015 |
Keywords
- ASSOCIATION SCHEMES
- MAJORANA REPRESENTATIONS
- MONSTER ALGEBRA