Stratification of asthma phenotypes by airway proteomic signatures

Paolo Montuschi, Nadia Mores, James P.R. Schofield, Dominic Burg, Ben Nicholas, Fabio Strazzeri, Joost Brandsma, Doroteya Staykova, Caterina Folisi, Aruna T. Bansal, Yang Xian, Yike Guo, Anthony Rowe, Julie Corfield, Susan Wilson, Jonathan Ward, Rene Lutter, Dominick E. Shaw, Per S. Bakke, Massimo CarusoSven-Erik Dahlen, Stephen J. Fowler, Ildikó Horváth, Peter Howarth, Norbert Krug, Marek Sanak, Thomas Sandström, Kai Sun, Ioannis Pandis, John Riley, Charles Auffray, Bertrand De Meulder, Diane Lefaudeux, Ana R. Sousa, Ian M. Adcock, Kian Fan Chung, Peter J. Sterk, Paul J. Skipp, Ratko Djukanović, H. Ahmed, D. Allen, P. Badorrek, S. Ballereau, F. Baribaud, A. Bedding, A. F. Behndig, A. Berglind, A. Berton, J. Bigler, M. J. Boedigheimer, K. Bønnelykke, P. Brinkman, A. Bush, D. Campagna, C. Casaulta, A. Chaiboonchoe, T. Davison, B. De Meulder, I. Delin, P. Dennison, P. Dodson, L. El Hadjam, D. Erzen, C. Faulenbach, K. Fichtner, N. Fitch, E. Formaggio, M. Gahlemann, G. Galffy, D. Garissi, T. Garret, J. Gent, E. Guillmant-Farry, E. Henriksson, U. Hoda, J. M. Hohlfeld, X. Hu, A. James, K. Johnson, N. Jullian, G. Kerry, M. Klüglich, R. Knowles, J. R. Konradsen, K. Kretsos, L. Krueger, A. S. Lantz, C. Larminie, P. Latzin, D. Lefaudeux, N. Lemonnier, L. A. Lowe, R. Lutter, A. Manta, A. Mazein, L. Mcevoy, A. Menzies-Gow, C. S. Murray, K. Nething, U. Nihlén, R. Niven, B. Nordlund, S. Nsubuga, J. Pellet, C. Pison, G. Praticò, M. Puig Valls, K. Riemann, J. P. Rocha, C. Rossios, G. Santini, M. Saqi, S. Scott, N. Sehgal, A. Selby, P. Söderman, A. Sogbesan, F. Spycher, S. Stephan, J. Stokholm, M. Sunther, M. Szentkereszty, L. Tamasi, K. Tariq, S. Valente, W. M. Van Aalderen, C. M. Van Drunen, J. Van Eyll, A. Vyas, W. Yu, W. Zetterquist, Z. Zolkipli, A. H. Zwinderman

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

22 Citazioni (Scopus)


Background: Stratification by eosinophil and neutrophil counts increases our understanding of asthma and helps target therapy, but there is room for improvement in our accuracy to predict treatment responses and a need for better understanding of the underlying mechanisms. Objective: Identify molecular sub-phenotypes of asthma defined by proteomic signatures for improved stratification. Methods:Unbiased label-free quantitative mass spectrometry and topological data analysis were used to analyse the proteomes of sputum supernatants from 246 participants (206 asthmatics) as a novel means of asthma stratification. Microarray analysis of sputum cells provided transcriptomics data additionally to inform on underlying mechanisms. Results: Analysis of the sputum proteome resulted in 10 clusters, proteotypes, based on similarity in proteomics features, representing discrete molecular sub-phenotypes of asthma. Overlaying granulocyte counts onto the 10 clusters as metadata further defined three of these as highly eosinophilic, three as highly neutrophilic, and two as highly atopic with relatively low granulocytic inflammation. For each of these three phenotypes, logistic regression analysis identified candidate protein biomarkers, and matched transcriptomic data pointed to differentially activated underlying mechanisms. Conclusion: This study provides further stratification of asthma currently classified by quantifying granulocytic inflammation and gives additional insight into their underlying mechanisms which could become targets for novel therapies
Lingua originaleEnglish
pagine (da-a)N/A-N/A
Stato di pubblicazionePubblicato - 2019


  • asthma
  • phenotypes
  • proteomics

Fingerprint Entra nei temi di ricerca di 'Stratification of asthma phenotypes by airway proteomic signatures'. Insieme formano una fingerprint unica.

Cita questo