(Stem and Word) Predictability in Italian verb paradigms: An Entropy-Based Study Exploiting the New Resource LeFFI

Matteo Pellegrini, Alessandra Teresa Cignarella

Risultato della ricerca: Contributo in libroContributo a convegno

Abstract

In this paper we present LeFFI, an inflected lexicon of Italian listing all the available wordforms of 2,053 verbs. We then use this resource to perform an entropy-based analysis of the mutual predictability of wordforms within Italian verb paradigms, and compare our findings to the ones of previous work on stem predictability in Italian verb inflection.
Lingua originaleEnglish
Titolo della pubblicazione ospiteProceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020: Bologna, Italy, March 1-3, 2021
Pagine341-346
Numero di pagine6
DOI
Stato di pubblicazionePubblicato - 2020
EventoSeventh Italian Conference on Computational Linguistics CLiC-it 2020 - Bologna, Italy
Durata: 1 mar 20213 mar 2021

Convegno

ConvegnoSeventh Italian Conference on Computational Linguistics CLiC-it 2020
CittàBologna, Italy
Periodo1/3/213/3/21

Keywords

  • Entropy
  • Inflection
  • Paradigms
  • Predictability

Fingerprint

Entra nei temi di ricerca di '(Stem and Word) Predictability in Italian verb paradigms: An Entropy-Based Study Exploiting the New Resource LeFFI'. Insieme formano una fingerprint unica.

Cita questo