Stein–Weiss type inequality on the upper half space and its applications

Xiang Li, Zifei Shen, Marco Squassina*, Minbo Yang

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolo in rivista

Abstract

In this paper, we establish some Stein–Weiss type inequalities with general kernels on the upper half space and study the extremal functions of the optimal constant. Furthermore, we also investigate the regularity, asymptotic estimates, symmetry and non-existence results of positive solutions of corresponding Euler–Lagrange system. As an application, we derive some Liouville type results for the Hartree type equations on the half space.
Lingua originaleEnglish
pagine (da-a)22-35
Numero di pagine14
RivistaMathematische Zeitschrift
Volume306
DOI
Stato di pubblicazionePubblicato - 2024

Keywords

  • Classification
  • Extremal functions
  • Stein–Weiss type inequality
  • The method of moving plane

Fingerprint

Entra nei temi di ricerca di 'Stein–Weiss type inequality on the upper half space and its applications'. Insieme formano una fingerprint unica.

Cita questo