Stationary solutions for the 2D critical Dirac equation with Kerr nonlinearity

Risultato della ricerca: Contributo in rivistaArticolo in rivista

10 Citazioni (Scopus)

Abstract

In this paper we prove the existence of an exponentially localized stationary solution for a two-dimensional cubic Dirac equation. It appears as an effective equation in the description of nonlinear waves for some Condensed Matter (Bose–Einstein condensates) and Nonlinear Optics (optical fibers) systems. The nonlinearity is of Kerr-type, that is of the form |ψ|2ψ and thus not Lorenz-invariant. We solve compactness issues related to the critical Sobolev embedding H[Formula presented](R2,C2)↪L4(R2,C4) thanks to a particular radial ansatz. Our proof is then based on elementary dynamical systems arguments.
Lingua originaleEnglish
pagine (da-a)7941-7964
Numero di pagine24
RivistaJournal of Differential Equations
Volume263
DOI
Stato di pubblicazionePubblicato - 2017

Keywords

  • critical Dirac equations

Fingerprint Entra nei temi di ricerca di 'Stationary solutions for the 2D critical Dirac equation with Kerr nonlinearity'. Insieme formano una fingerprint unica.

Cita questo