Spontaneous calcification process in primary renal cells from a medullary sponge kidney patient harbouring a GDNF mutation

Federica Mezzabotta, Rosalba Cristofaro, Monica Ceol, Dorella Del Prete, Giovanna Priante, Alessandra Familiari, Antonia Fabris, Angela D'Angelo, Giovanni Gambaro, Franca Anglani

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

16 Citazioni (Scopus)


Medullary nephrocalcinosis is a hallmark of medullary sponge kidney (MSK). We had the opportunity to study a spontaneous calcification process in vitro by utilizing the renal cells of a patient with MSK who was heterozygous for the c.-27 + 18G>A variant in the GDNF gene encoding glial cell-derived neurotrophic factor. The cells were obtained by collagenase digestion of papillary tissues from the MSK patient and from two patients who had no MSK or nephrocalcinosis. These cells were typed by immunocytochemistry, and the presence of mineral deposits was studied using von Kossa staining, scanning electron microscopy analysis and an ALP assay. Osteoblastic lineage markers were studied using immunocytochemistry and RT-PCR. Staminality markers were also analysed using flow cytometry, magnetic cell separation technology, immunocytochemistry and RT-PCR. Starting from p2, MSK and control cells formed nodules with a behaviour similar to that of calcifying pericytes; however, Ca2 PO4 was only found in the MSK cultures. The MSK cells had morphologies and immunophenotypes resembling those of pericytes or stromal stem cells and were positive for vimentin, ZO1, αSMA and CD146. In addition, the MSK cells expressed osteocalcin and osteonectin, indicating an osteoblast-like phenotype. In contrast to the control cells, GDNF was down-regulated in the MSK cells. Stable GDNF knockdown was established in the HK2 cell line and was found to promote Ca2 PO4 deposition when the cells were incubated with calcifying medium by regulating the osteonectin/osteopontin ratio in favour of osteonectin. Our data indicate that the human papilla may be a perivascular niche in which pericyte/stromal-like cells can undergo osteogenic differentiation under particular conditions and suggest that GDNF down-regulation may have influenced the observed phenomenon.
Lingua originaleEnglish
pagine (da-a)889-902
Numero di pagine14
RivistaJournal of Cellular and Molecular Medicine
Stato di pubblicazionePubblicato - 2015


  • GDNF
  • medullary sponge kidney
  • mesenchymal stromal stem cells
  • nephrocalcinosis


Entra nei temi di ricerca di 'Spontaneous calcification process in primary renal cells from a medullary sponge kidney patient harbouring a GDNF mutation'. Insieme formano una fingerprint unica.

Cita questo