Spectral dimension and diffusion in multi-scale spacetimes

Giuseppe Nardelli, Gianluca Calcagni

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

20 Citazioni (Scopus)

Abstract

Starting from a classical-mechanics stochastic model encoded in a Langevin equation, we derive the natural diffusion equation associated with three classes of multiscale spacetimes (with weighted, ordinary, and "q-Poincar'e" symmetries). As a consistency check, the same result is obtained by inspecting the propagation of a quantum-mechanical particle in a disordered environment. The solution of the diffusion equation displays a time-dependent diffusion coefficient and represents a probabilistic process, classified according to the statistics of the noise in the Langevin equation. We thus illustrate, also with pictorial aids, how spacetime geometries can be more completely catalogued not only through their Hausdorff and spectral dimension, but also by a stochastic process. The spectral dimension of multifractional spacetimes is then computed and compared with what was found in previous studies, where a diffusion equation with some open issues was assumed rather than derived. These issues are here discussed and solved, and they point towards the model with q-Poincar'e symmetries.
Lingua originaleEnglish
pagine (da-a)N/A-N/A
Numero di pagine23
RivistaPHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY
Volume88
DOI
Stato di pubblicazionePubblicato - 2013

Keywords

  • fractional spaces
  • spectral dimension

Fingerprint

Entra nei temi di ricerca di 'Spectral dimension and diffusion in multi-scale spacetimes'. Insieme formano una fingerprint unica.

Cita questo