Abstract
Let V be a vector space over a field F of characteristic p and let
T be a regular subgroup of the affine group AGL(V). In the finite dimensional case we show that, if T is abelian or p>0, then T is unipotent. For T abelian, pushing forward some ideas used by Caranti, Dalla Volta, Sala,
we show that the set {t-I|t\in T} is a subalgebra of End_F(F+V), which is nilpotent when V has finite dimension.
This allows a rather systematic construction of abelian regular subgroups.
Lingua originale | English |
---|---|
pagine (da-a) | 17-23 |
Numero di pagine | 7 |
Rivista | International Journal of Group Theory |
Stato di pubblicazione | Pubblicato - 2012 |
Pubblicato esternamente | Sì |
Keywords
- affine group