Some considerations to carry out a composite indicator for ordinal data

Maria Chiara Zanarotti*, Laura Pagani

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolopeer review

2 Citazioni (Scopus)

Abstract

Composite indicators (CIs) are important and useful tools in many elds\r\nto assess, compare and rank performances, development stage, quality and\r\nmany other dierent targets. CIs are an overall measure of a multidimen-\r\nsional, not directly observable, concept and are obtained by means of a set of\r\nmanifest variables (elementary indicators) that contribute to dene the over-\r\nall measure. In this paper, some matters regarding methods to build CIs are\r\nreviewed, assuming elementary indicators are ordinal and quantication is\r\nnecessary to convert observed data into a numerical form. Scoring methods,\r\naggregating functions and weighting systems are considered. In particular,\r\na scoring method based on the observed distribution or the use of dissim-\r\nilarity indices for quantication together with the Kendall- association or\r\na heterogeneity measure for weighting are suggested. Some of the reviewed\r\nprocedures are compared using students' satisfaction data.
Lingua originaleInglese
pagine (da-a)384-397
Numero di pagine14
RivistaElectronic Journal of Applied Statistical Analysis
Volume8
Numero di pubblicazione3
DOI
Stato di pubblicazionePubblicato - 2015

All Science Journal Classification (ASJC) codes

  • Statistica e Probabilità
  • Modellazione e Simulazione

Keywords

  • combining functions
  • composite indicator
  • dissimilarity indices
  • ordered categorical variables
  • performance index

Fingerprint

Entra nei temi di ricerca di 'Some considerations to carry out a composite indicator for ordinal data'. Insieme formano una fingerprint unica.

Cita questo