TY - JOUR
T1 - Solving the puzzle of spinal muscular atrophy: what are the missing pieces?
AU - Tiziano, Francesco Danilo
AU - Melki, Judith
AU - Simard, Louise R.
PY - 2013
Y1 - 2013
N2 - Spinal muscular atrophy (SMA) is an autosomal recessive, lower motor neuron disease. Clinical heterogeneity is pervasive: three infantile (type I-III) and one adult-onset (type IV) forms are recognized. Type I SMA is the most common genetic cause of death in infancy and accounts for about 50% of all patients with SMA. Most forms of SMA are caused by mutations of the survival motor neuron (SMN1) gene. A second gene that is 99% identical to SMN1 (SMN2) is located in the same region. The only functionally relevant difference between the two genes identified to date is a C → T transition in exon 7 of SMN2, which determines an alternative spliced isoform that predominantly excludes exon 7. Thus, SMN2 genes do not produce sufficient full length SMN protein to prevent the onset of the disease. Since the identification of the causative mutation, biomedical research of SMA has progressed by leaps and bounds: from clues on the function of SMN protein, to the development of different models of the disease, to the identification of potential treatments, some of which are currently in human trials. The aim of this review is to elucidate the current state of knowledge, emphasizing how close we are to the solution of the puzzle that is SMA, and, more importantly, to highlight the missing pieces of this puzzle. Filling in these gaps in our knowledge will likely accelerate the development and delivery of efficient treatments for SMA patients and be a prerequisite towards achieving our final goal, the cure of SMA.
AB - Spinal muscular atrophy (SMA) is an autosomal recessive, lower motor neuron disease. Clinical heterogeneity is pervasive: three infantile (type I-III) and one adult-onset (type IV) forms are recognized. Type I SMA is the most common genetic cause of death in infancy and accounts for about 50% of all patients with SMA. Most forms of SMA are caused by mutations of the survival motor neuron (SMN1) gene. A second gene that is 99% identical to SMN1 (SMN2) is located in the same region. The only functionally relevant difference between the two genes identified to date is a C → T transition in exon 7 of SMN2, which determines an alternative spliced isoform that predominantly excludes exon 7. Thus, SMN2 genes do not produce sufficient full length SMN protein to prevent the onset of the disease. Since the identification of the causative mutation, biomedical research of SMA has progressed by leaps and bounds: from clues on the function of SMN protein, to the development of different models of the disease, to the identification of potential treatments, some of which are currently in human trials. The aim of this review is to elucidate the current state of knowledge, emphasizing how close we are to the solution of the puzzle that is SMA, and, more importantly, to highlight the missing pieces of this puzzle. Filling in these gaps in our knowledge will likely accelerate the development and delivery of efficient treatments for SMA patients and be a prerequisite towards achieving our final goal, the cure of SMA.
KW - sma
KW - spinal muscular atrophy
KW - sma
KW - spinal muscular atrophy
UR - http://hdl.handle.net/10807/51263
M3 - Article
VL - 2013
SP - 2836
EP - 2845
JO - AMERICAN JOURNAL OF MEDICAL GENETICS. PART A
JF - AMERICAN JOURNAL OF MEDICAL GENETICS. PART A
SN - 1552-4825
ER -