Social media information to forecast Bitcoin value: A comparison of vines and graphical models

Luciana Dalla Valle, Lorenzo Merli, Silvia Angela Osmetti, Claudia Tarantola

Risultato della ricerca: Contributo in libroCapitolo

Abstract

The aim is to enhance Bitcoin price forecasts by leveraging graphical models and vine copulas. By integrating daily Bitcoin prices with Google\r\nTrends data, Twitter activity, and sentiment analysis using Bing and Afinn lexicons, the complex relationships within Bitcoin trends are captured.\r\nOne hundred fourteen (114) daily observations from February to May 2021 are utilized. Mixed graphical models (MGM) and vector autoregressive (VAR) models forecast Bitcoin prices, while ARIMA-GARCH and gamlss models extract residuals for vine copula implementation. Vine\r\nmodels predict Bitcoin prices using a rolling window method. Comparing forecasts with observed data highlights model accuracy, providing a\r\ncomprehensive view of Bitcoin market dynamics and public sentiment.
Lingua originaleInglese
Titolo della pubblicazione ospitePROGRAMME AND ABSTRACTS, CFE-CMStatistics 2024, 18th International Conference on Computational and Financial Econometrics (CFE 2024) and Computational and Methodological Statistics (CMStatistics 2024)
EditoreECOSTA ECONOMETRICS AND STATISTICS
Pagine144-144
Numero di pagine1
ISBN (stampa)978-9925-7812-8-7
Stato di pubblicazionePubblicato - 2024

Keywords

  • graphical model
  • sentiment analysis
  • vine copula

Fingerprint

Entra nei temi di ricerca di 'Social media information to forecast Bitcoin value: A comparison of vines and graphical models'. Insieme formano una fingerprint unica.

Cita questo