Social media information to forecast Bitcoin value: A comparison of vines and graphical models

Luciana Dalla Valle, Lorenzo Merli, Silvia Angela Osmetti, Claudia Tarantola

Risultato della ricerca: Contributo in libroChapter

Abstract

The aim is to enhance Bitcoin price forecasts by leveraging graphical models and vine copulas. By integrating daily Bitcoin prices with Google Trends data, Twitter activity, and sentiment analysis using Bing and Afinn lexicons, the complex relationships within Bitcoin trends are captured. One hundred fourteen (114) daily observations from February to May 2021 are utilized. Mixed graphical models (MGM) and vector autoregressive (VAR) models forecast Bitcoin prices, while ARIMA-GARCH and gamlss models extract residuals for vine copula implementation. Vine models predict Bitcoin prices using a rolling window method. Comparing forecasts with observed data highlights model accuracy, providing a comprehensive view of Bitcoin market dynamics and public sentiment.
Lingua originaleEnglish
Titolo della pubblicazione ospitePROGRAMME AND ABSTRACTS, CFE-CMStatistics 2024, 18th International Conference on Computational and Financial Econometrics (CFE 2024) and Computational and Methodological Statistics (CMStatistics 2024)
EditorErricos Kontoghiorghes, Michael Pitt Ana Colubi
Pagine144
Numero di pagine1
Stato di pubblicazionePubblicato - 2024

Keywords

  • vine copula
  • sentiment analysis
  • graphical model

Fingerprint

Entra nei temi di ricerca di 'Social media information to forecast Bitcoin value: A comparison of vines and graphical models'. Insieme formano una fingerprint unica.

Cita questo