Abstract
The recent sports science literature conveys a growing interest in robust statistical methods to analyze smooth, regularly-sampled functional data. This paper focuses on the inferential problem of identifying the parts of a functional domain where two population means differ. We considered four approaches recently used in sports science: interval-wise testing (IWT), statistical parametric mapping (SPM), statistical nonparametric mapping (SnPM) and the Benjamini-Hochberg (BH) procedure for false discovery control. We applied these procedures to both six representative sports science datasets, and also to systematically varied simulated datasets which replicated ten signal- and/or noise-relevant parameters that were identified in the experimental datasets. We observed generally higher IWT and BH sensitivity for five of the six experimental datasets. BH was the most sensitive procedure in simulation, but also had relatively high false positive rates (generally > 0.1) which increased sharply (> 0.3) in certain extreme simulation scenarios including highly rough data. SPM and SnPM were more sensitive than IWT in simulation except for (1) high roughness, (2) high nonstationarity, and (3) highly nonuniform smoothness. These results suggest that the optimum procedure is both signal and noise-dependent. We conclude that: (1) BH is most sensitive but also susceptible to high false positive rates, (2) IWT, SPM and SnPM appear to have relatively inconsequential differences in terms of domain identification sensitivity, except in cases of extreme signal/noise characteristics, where IWT appears to be superior at identifying a greater portion of the true signal.
Lingua originale | English |
---|---|
pagine (da-a) | 1-24 |
Numero di pagine | 24 |
Rivista | AStA Advances in Statistical Analysis |
DOI | |
Stato di pubblicazione | Pubblicato - 2021 |
Keywords
- Biomechanics
- Continuum data analysis
- Kinematics
- Local inference
- One-dimensional functional data
- Signal modeling
- Simulation