Scalarizations and its stability in vector optimization

Enrico Miglierina, E. Miglierina, E. Molho

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

44 Citazioni (Scopus)

Abstract

A class of scalarizations of vector optimization problems is studied in order to characterize weakly efficient, efficient, and properly efficient points of a nonconvex vector problem. A parallelism is established between the different solutions of the scalarized problem and the various efficient frontiers. In particular, properly efficient points correspond to stable solutions with respect to suitable perturbations of the feasible set.
Lingua originaleEnglish
pagine (da-a)657-670
Numero di pagine14
RivistaJournal of Optimization Theory and Applications
Volume114
DOI
Stato di pubblicazionePubblicato - 2002

Keywords

  • Vector optimization
  • scalarization
  • set convergence
  • well-posedness

Fingerprint Entra nei temi di ricerca di 'Scalarizations and its stability in vector optimization'. Insieme formano una fingerprint unica.

Cita questo