Robust Model-Based Learning to Discover New Wheat Varieties and Discriminate Adulterated Kernels in X-Ray Images

Andrea Cappozzo*, Francesca Greselin, Thomas Brendan Murphy

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in libroContributo a conferenza

Abstract

In semi-supervised classification, class memberships are learnt from a trustworthy set of units. Despite careful data collection, some labels in the learning set could be unreliable (label noise). Further, a proportion of observations might depart from the main structure of the data (outliers) and new groups may appear in the test set, which were not encountered earlier in the training phase (unobserved classes). Therefore, we present here a robust and adaptive version of the Discriminant Analysis rule, capable of handling situations in which one or more of the aforementioned problems occur. The proposed approach is successfully employed in performing anomaly and novelty detection on geometric features recorded from X-ray photograms of grain kernels from different varieties.
Lingua originaleInglese
Titolo della pubblicazione ospiteStatistical Learning and Modeling in Data Analysis
EditoreSpringer
Pagine29-36
Numero di pagine8
ISBN (stampa)9783030699437
DOI
Stato di pubblicazionePubblicato - 2021

All Science Journal Classification (ASJC) codes

  • Informatica Applicata
  • Sistemi Informativi
  • Sistemi Informativi e Gestione dell’Informazione
  • Analisi

Keywords

  • Anomaly detection
  • Impartial trimming
  • Label noise
  • Model-based classification
  • Novelty detection
  • Robust estimation

Fingerprint

Entra nei temi di ricerca di 'Robust Model-Based Learning to Discover New Wheat Varieties and Discriminate Adulterated Kernels in X-Ray Images'. Insieme formano una fingerprint unica.

Cita questo