Robust Identification of Highly Persistent Interest Rate Regimes

Stefano Peluso, Antonietta Mira, Pietro Muliere

Risultato della ricerca: Contributo in rivistaArticolo in rivista

2 Citazioni (Scopus)

Abstract

Parametric specifications in State Space Models (SSMs) are a source of bias in case of mismatch between modeling assumptions and reality. We propose a Bayesian semiparametric SSM that is robust to misspecified emission distributions. The Markovian nature of the latent stochastic process creates a temporal dependence and links the random probability distributions of the observations in a mixture of products of Dirichlet processes (MPDP). The model is shown to be adequate and it is applied to simulated data and to the motivating empirical problem of regime shifts in interest rates with latent state persistence.
Lingua originaleEnglish
pagine (da-a)102-117
Numero di pagine16
RivistaInternational Journal of Approximate Reasoning
DOI
Stato di pubblicazionePubblicato - 2017

Keywords

  • Bayesian semiparametric State Space Model

Fingerprint

Entra nei temi di ricerca di 'Robust Identification of Highly Persistent Interest Rate Regimes'. Insieme formano una fingerprint unica.

Cita questo