TY - JOUR
T1 - Resting state connectivity between default mode network and insula encodes acute migraine headache
AU - Coppola, Gianluca
AU - Di Renzo, Antonio
AU - Tinelli, Emanuele
AU - Di Lorenzo, Cherubino
AU - Scapeccia, Marco
AU - Parisi, Vincenzo
AU - Serrao, Mariano
AU - Evangelista, Maurizio
AU - Ambrosini, Anna
AU - Colonnese, Claudio
AU - Schoenen, Jean
AU - Pierelli, Francesco
PY - 2017
Y1 - 2017
N2 - Background Previous functional MRI studies have revealed that ongoing clinical pain in different chronic pain syndromes is directly correlated to the connectivity strength of the resting default mode network (DMN) with the insula. Here, we investigated seed-based resting state DMN-insula connectivity during acute migraine headaches. Methods Thirteen migraine without aura patients (MI) underwent 3 T MRI scans during the initial six hours of a spontaneous migraine attack, and were compared to a group of 19 healthy volunteers (HV). We evaluated headache intensity with a visual analogue scale and collected seed-based MRI resting state data in the four core regions of the DMN: Medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and left and right inferior parietal lobules (IPLs), as well as in bilateral insula. Results Compared to HV, MI patients showed stronger functional connectivity between MPFC and PCC, and between MPFC and bilateral insula. During migraine attacks, the strength of MPFC-to-insula connectivity was negatively correlated with pain intensity. Conclusion We show that greater subjective intensity of pain during a migraine attack is associated with proportionally weaker DMN-insula connectivity. This is at variance with other chronic extra-cephalic pain disorders where the opposite was found, and may thus be a hallmark of acute migraine head pain.
AB - Background Previous functional MRI studies have revealed that ongoing clinical pain in different chronic pain syndromes is directly correlated to the connectivity strength of the resting default mode network (DMN) with the insula. Here, we investigated seed-based resting state DMN-insula connectivity during acute migraine headaches. Methods Thirteen migraine without aura patients (MI) underwent 3 T MRI scans during the initial six hours of a spontaneous migraine attack, and were compared to a group of 19 healthy volunteers (HV). We evaluated headache intensity with a visual analogue scale and collected seed-based MRI resting state data in the four core regions of the DMN: Medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and left and right inferior parietal lobules (IPLs), as well as in bilateral insula. Results Compared to HV, MI patients showed stronger functional connectivity between MPFC and PCC, and between MPFC and bilateral insula. During migraine attacks, the strength of MPFC-to-insula connectivity was negatively correlated with pain intensity. Conclusion We show that greater subjective intensity of pain during a migraine attack is associated with proportionally weaker DMN-insula connectivity. This is at variance with other chronic extra-cephalic pain disorders where the opposite was found, and may thus be a hallmark of acute migraine head pain.
KW - Brain networks
KW - insula
KW - magnetic resonance imaging
KW - migraine
KW - seed-based resting state
KW - Brain networks
KW - insula
KW - magnetic resonance imaging
KW - migraine
KW - seed-based resting state
UR - http://hdl.handle.net/10807/104945
UR - http://journals.sagepub.com/doi/abs/10.1177/0333102417715230?url_ver=z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
U2 - 10.1177/0333102417715230
DO - 10.1177/0333102417715230
M3 - Article
SN - 0333-1024
VL - 2017
SP - 333102417715230-N/A
JO - Cephalalgia
JF - Cephalalgia
ER -