TY - JOUR
T1 - Reply to 'Comment on' gravity and the Poincare group'
AU - Nardelli, Giuseppe
AU - Grignani, Gianluca
PY - 1993
Y1 - 1993
N2 - In the first order form, the model considered by Strobl presents, besides local Lorentz and diffeomorphism invariances, an additional local non-linear symmetry. When the model is realized as a Poincar\'e gauge theory according to the procedure outlined in Refs.[1,2], the generators of the non-linear symmetry are responsible for the ``nasty constraint algebra''. We show that not only the Poincar\'e gauge theoretic formulation of the model is not the cause of the emerging of the undesirable constraint algebra, but actually allows to overcome the problem. In fact one can fix the additional symmetry without breaking the Poincar\'e gauge symmetry and the diffeomorphisms, so that, after a preliminary Dirac procedure, the remaining constraints uniquely satisfy the Poincar\'e algebra. After the additional symmetry is fixed, the equations of motion are unaltered. The objections to our method raised by Strobl in Ref.[3] are then immaterial. Some minor points put forward in Ref.[3] are also discussed.
AB - In the first order form, the model considered by Strobl presents, besides local Lorentz and diffeomorphism invariances, an additional local non-linear symmetry. When the model is realized as a Poincar\'e gauge theory according to the procedure outlined in Refs.[1,2], the generators of the non-linear symmetry are responsible for the ``nasty constraint algebra''. We show that not only the Poincar\'e gauge theoretic formulation of the model is not the cause of the emerging of the undesirable constraint algebra, but actually allows to overcome the problem. In fact one can fix the additional symmetry without breaking the Poincar\'e gauge symmetry and the diffeomorphisms, so that, after a preliminary Dirac procedure, the remaining constraints uniquely satisfy the Poincar\'e algebra. After the additional symmetry is fixed, the equations of motion are unaltered. The objections to our method raised by Strobl in Ref.[3] are then immaterial. Some minor points put forward in Ref.[3] are also discussed.
KW - gauge theory of gravity
KW - gravity
KW - gauge theory of gravity
KW - gravity
UR - http://hdl.handle.net/10807/8565
UR - http://prd.aps.org/abstract/prd/v48/i10/p5032_1
U2 - 10.1103/PhysRevD.48.5032
DO - 10.1103/PhysRevD.48.5032
M3 - Article
VL - 1993
SP - 5032
EP - 5035
JO - Physical review D: Particles and fields
JF - Physical review D: Particles and fields
SN - 0556-2821
ER -