Remarks on quantum vortex theory on Riemann surfaces

Vittorio Penna, Mauro Spera

Risultato della ricerca: Contributo in rivistaArticolopeer review

6 Citazioni (Scopus)

Abstract

Quantized point vortex theories on a compact Riemann surface of arbitrary genus (in the zero total vorticity case) are investigated. By taking meromorphic functions thereon as order parameters and resorting to the Weil-Kostant, Abel, Riemann and Riemann-Roch theorems, a natural phase space and Hamiltonian for the vortex-antivortex configurations is exhibited, leading to explicit vortex-antivortex coherent states wave functions via geometric quantization. Furthermore, a relationship between point and smooth vorticities is established by means of Green functions associated to divisors on a Riemann surface and Poincare duality, thereby yielding a natural regularization of the singular theory.
Lingua originaleInglese
pagine (da-a)99-112
Numero di pagine14
RivistaJournal of Geometry and Physics
Volume27
Stato di pubblicazionePubblicato - 1998

Keywords

  • quantum vortex theory, Riemann surfaces, geometric quantization

Fingerprint

Entra nei temi di ricerca di 'Remarks on quantum vortex theory on Riemann surfaces'. Insieme formano una fingerprint unica.

Cita questo