Abstract
[Ita:]Relative Heffter arrays, denoted by Ht(m, n; s, k), have been introduced as a generalization of the classical concept of Heffter array. A Ht(m, n; s, k) is an m × n partially filled array with elements in ℤv, where v = 2nk + t, whose rows contain s filled cells and whose columns contain k filled cells, such that the elements in every row and column sum to zero and, for every x ∈ ℤv not belonging to the subgroup of order t, either x or −x appears in the array. In this paper we show how relative Heffter arrays can be used to construct biembeddings of cyclic cycle decompositions of the complete multipartite graph K(2nk + t)/t × t into an orientable surface. In particular, we construct such biembeddings providing integer globally simple square relative Heffter arrays for t = k = 3, 5, 7, 9 and n ≡ 3 (mod 4) and for k = 3 with t = n, 2n, any odd n.
Lingua originale | Inglese |
---|---|
pagine (da-a) | 241-271 |
Numero di pagine | 31 |
Rivista | Ars Mathematica Contemporanea |
Volume | 18 |
Numero di pubblicazione | 2 |
DOI | |
Stato di pubblicazione | Pubblicato - 2020 |
All Science Journal Classification (ASJC) codes
- Informatica Teorica
- Algebra e Teoria dei Numeri
- Geometria e Topologia
- Matematica Discreta e Combinatoria
Keywords
- Heffter array
- biembedding
- multipartite complete graph