TY - JOUR
T1 - Regulatory T cells fail to suppress CD4(+)T-bet(+) T cells in relapsing multiple sclerosis patients
AU - Frisullo, Giovanni
AU - Nociti, Viviana
AU - Iorio, Raffaele
AU - Patanella, Agata Katia
AU - Caggiula, Marcella
AU - Marti, Alessandro
AU - Sancricca, Cristina
AU - Mirabella, Massimiliano
AU - Tonali, Pietro Attilio
AU - Batocchi, Anna Paola
PY - 2009
Y1 - 2009
N2 - Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system and a defect in the regulatory T-cell subset seems to be involved in the pathogenesis of the disease. Foxp3 is a transcription factor that is selectively expressed in CD4+ CD25+ regulatory T cells and is required for their development and function. T-bet is a key transcription factor for the development of T helper 1 (Th1) cells. We found that both the percentage of circulating CD4+ CD25+ Foxp3+ cells and Foxp3 expression were lower in relapsing-remitting (RR) MS patients during relapses than during remission. Otherwise, the percentage of CD4+ T-bet+ T cells and T-bet expression in CD4+ T cells were higher in relapsing than in remitting RRMS patients. CD4+ CD25+ T cells both from relapsing and from remitting RRMS patients showed significantly less capacity than corresponding cells from healthy subjects to suppress autologous CD4+ CD25(-) T-cell proliferation, despite a similar Foxp3 expression level. CD4+ CD25+ T cells from healthy subjects and patients in remission clearly reduced T-bet mean fluorescence intensity (MFI) in CD4+ CD25(-) T cells up to a ratio of 1:10, whereas CD4+ CD25+ T cells from patients in relapse were able to reduce T-bet expression only at a high ratio. Our data indicate that the increased number of regulatory T (T-reg) cells and the increased Foxp3 expression in circulating CD4+ CD25+ T cells may contribute to the maintenance of tolerance in the remission phase of MS. Moreover, the inhibitory capacity of CD4+ CD25+ T cells seems to be impaired in relapsing patients under inflammatory conditions, as shown by the high levels of T-bet expression in CD4+ T cells.
AB - Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system and a defect in the regulatory T-cell subset seems to be involved in the pathogenesis of the disease. Foxp3 is a transcription factor that is selectively expressed in CD4+ CD25+ regulatory T cells and is required for their development and function. T-bet is a key transcription factor for the development of T helper 1 (Th1) cells. We found that both the percentage of circulating CD4+ CD25+ Foxp3+ cells and Foxp3 expression were lower in relapsing-remitting (RR) MS patients during relapses than during remission. Otherwise, the percentage of CD4+ T-bet+ T cells and T-bet expression in CD4+ T cells were higher in relapsing than in remitting RRMS patients. CD4+ CD25+ T cells both from relapsing and from remitting RRMS patients showed significantly less capacity than corresponding cells from healthy subjects to suppress autologous CD4+ CD25(-) T-cell proliferation, despite a similar Foxp3 expression level. CD4+ CD25+ T cells from healthy subjects and patients in remission clearly reduced T-bet mean fluorescence intensity (MFI) in CD4+ CD25(-) T cells up to a ratio of 1:10, whereas CD4+ CD25+ T cells from patients in relapse were able to reduce T-bet expression only at a high ratio. Our data indicate that the increased number of regulatory T (T-reg) cells and the increased Foxp3 expression in circulating CD4+ CD25+ T cells may contribute to the maintenance of tolerance in the remission phase of MS. Moreover, the inhibitory capacity of CD4+ CD25+ T cells seems to be impaired in relapsing patients under inflammatory conditions, as shown by the high levels of T-bet expression in CD4+ T cells.
KW - multiple sclerosis
KW - regulatory T cell
KW - multiple sclerosis
KW - regulatory T cell
UR - http://hdl.handle.net/10807/19362
U2 - 10.1111/j.1365-2567.2008.02963.x
DO - 10.1111/j.1365-2567.2008.02963.x
M3 - Article
SN - 0019-2805
VL - 127
SP - 418
EP - 428
JO - Immunology
JF - Immunology
ER -