Abstract
In this paper we prove the existence of solutions of regularized set-valued variational\r\ninequalities involving Br´ezis pseudomonotone operators in reflexive and locally uniformly\r\nconvex Banach spaces. By taking advantage of this result, we approximate a general setvalued\r\nvariational inequality with suitable regularized set-valued variational inequalities,\r\nand we show that their solutions weakly converge to a solution of the original one. Furthermore,\r\nby strengthening the coercivity conditions, we can prove the strong convergence of\r\nthe approximate solutions.
| Lingua originale | Inglese |
|---|---|
| pagine (da-a) | 175-190 |
| Numero di pagine | 16 |
| Rivista | Set-Valued and Variational Analysis |
| Volume | 2020 |
| Numero di pubblicazione | 29 |
| DOI | |
| Stato di pubblicazione | Pubblicato - 2020 |
All Science Journal Classification (ASJC) codes
- Analisi
- Statistica e Probabilità
- Analisi Numerica
- Geometria e Topologia
- Matematica Applicata
Keywords
- Approximate solutions
- B-pseudomonotonicity
- Navies Stokes operators
- Set-valued variational inequalities