Regular subgroups of the affine group with no translations

Marco Antonio Pellegrini*, Maria Clara Tamburini Bellani

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolopeer review

3 Citazioni (Scopus)

Abstract

Given a regular subgroup R of AGLn(F), one can ask if R contains nontrivial translations. A negative answer to this question was given by Liebeck, Praeger and Saxl for AGL2(p) (p a prime), AGL3(p) (p odd) and for AGL4(2). A positive answer was given by Hegedűs for AGLn(p) when n≥4 if p is odd and for n=3 or n≥5 if p=2. A first generalization to finite fields of Hegedűs’ construction was recently obtained by Catino, Colazzo and Stefanelli. In this paper we give examples of such subgroups in AGLn(F) for any n≥5 and any field F. For n<5 we provide necessary and sufficient conditions for their existence, assuming R to be unipotent if charF=0
Lingua originaleInglese
pagine (da-a)410-418
Numero di pagine9
RivistaJournal of Algebra
Volume478
Numero di pubblicazione15 May 2017
DOI
Stato di pubblicazionePubblicato - 2017

All Science Journal Classification (ASJC) codes

  • Algebra e Teoria dei Numeri

Keywords

  • Affine group
  • Regular subgroup
  • Translations

Fingerprint

Entra nei temi di ricerca di 'Regular subgroups of the affine group with no translations'. Insieme formano una fingerprint unica.

Cita questo