Random effects clustering in multilevel modeling: choosing a proper partition

Emiliano Sironi, Claudio Conversano, Massimo Cannas, Francesco Mola

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

Abstract

A novel criterion for estimating a latent partition of the observed groups based on the output of a hierarchical model is presented. It is based on a loss function combining the Gini income inequality ratio and the predictability index of Goodman and Kruskal in order to achieve maximum heterogeneity of random effects across groups and maximum homogeneity of predicted probabilities inside estimated clusters. The index is compared with alternative approaches in a simulation study and applied in a case study concerning the role of hospital level variables in deciding for a cesarean section.
Lingua originaleEnglish
pagine (da-a)279-301
Numero di pagine23
RivistaAdvances in Data Analysis and Classification
Volume13
DOI
Stato di pubblicazionePubblicato - 2019

Keywords

  • multilevel

Fingerprint Entra nei temi di ricerca di 'Random effects clustering in multilevel modeling: choosing a proper partition'. Insieme formano una fingerprint unica.

Cita questo