TY - JOUR
T1 - Prevention of endotracheal suctioning-induced alveolar derecruitment in acute lung injury
AU - Maggiore, Salvatore Maurizio
AU - Lellouche, F
AU - Pigeot, J
AU - Taille, S
AU - Deye, N
AU - Durrmeyer, X
AU - Richard, Jc
AU - Mancebo, J
AU - Lemaire, F
AU - Brochard, L.
PY - 2003
Y1 - 2003
N2 - We studied endotracheal suctioning-induced alveolar derecruitment and its prevention in nine patients with acute lung injury. Changes in end-expiratory lung volume measured by inductive plethysmography, positive end-expiratory pressure-induced alveolar recruitment assessed by pressure-volume curves, oxygen saturation, and respiratory mechanics were recorded. Suctioning was performed after disconnection from the ventilator, through the swivel adapter of the catheter mount, with a closed system, and with the two latter techniques while performing recruitment maneuvers during suctioning (40 cm H2O pressure-supported breaths). End-expiratory lung volume after disconnection fell more than with all other techniques (-1,466 +/- 586, -733 +/- 406, -531 +/- 228, -168 +/- 176, and -284 +/- 317 ml after disconnection, through the swivel adapter, with the closed system, and with the two latter techniques with pressure-supported breaths, respectively, p < 0.001), and was not fully recovered 1 minute after suctioning. Recruitment decreased after disconnection and using the swivel adapter (-104 +/- 31 and -63 +/- 25 ml, respectively), was unchanged with the closed system (-1 +/- 10 ml), and increased when performing recruitment maneuvers during suctioning (71 +/- 37 and 60 +/- 30 ml) (p < 0.001). Changes in alveolar recruitment correlated with changes in lung volume (rho = 0.88, p < 0.001) and compliance (rho = 0.9, p < 0.001). Oxygenation paralleled lung volume changes. Suctioning-induced lung derecruitment in acute lung injury can be prevented by performing recruitment maneuvers during suctioning and minimized by avoiding disconnection.
AB - We studied endotracheal suctioning-induced alveolar derecruitment and its prevention in nine patients with acute lung injury. Changes in end-expiratory lung volume measured by inductive plethysmography, positive end-expiratory pressure-induced alveolar recruitment assessed by pressure-volume curves, oxygen saturation, and respiratory mechanics were recorded. Suctioning was performed after disconnection from the ventilator, through the swivel adapter of the catheter mount, with a closed system, and with the two latter techniques while performing recruitment maneuvers during suctioning (40 cm H2O pressure-supported breaths). End-expiratory lung volume after disconnection fell more than with all other techniques (-1,466 +/- 586, -733 +/- 406, -531 +/- 228, -168 +/- 176, and -284 +/- 317 ml after disconnection, through the swivel adapter, with the closed system, and with the two latter techniques with pressure-supported breaths, respectively, p < 0.001), and was not fully recovered 1 minute after suctioning. Recruitment decreased after disconnection and using the swivel adapter (-104 +/- 31 and -63 +/- 25 ml, respectively), was unchanged with the closed system (-1 +/- 10 ml), and increased when performing recruitment maneuvers during suctioning (71 +/- 37 and 60 +/- 30 ml) (p < 0.001). Changes in alveolar recruitment correlated with changes in lung volume (rho = 0.88, p < 0.001) and compliance (rho = 0.9, p < 0.001). Oxygenation paralleled lung volume changes. Suctioning-induced lung derecruitment in acute lung injury can be prevented by performing recruitment maneuvers during suctioning and minimized by avoiding disconnection.
KW - Acute lung injury
KW - Alveolar recruitment
KW - closed suctioning system
KW - endotracheal suctioning
KW - recruitment maneuver
KW - Acute lung injury
KW - Alveolar recruitment
KW - closed suctioning system
KW - endotracheal suctioning
KW - recruitment maneuver
UR - http://hdl.handle.net/10807/54153
M3 - Article
SN - 1073-449X
VL - 9
SP - 1215
EP - 1224
JO - American Journal of Respiratory and Critical Care Medicine
JF - American Journal of Respiratory and Critical Care Medicine
ER -