TY - JOUR
T1 - Perturbative Wilson loop in two dimensional non-commutative Yang Mills theory
AU - Bassetto, A.
AU - Nardelli, Giuseppe
AU - Bassetto, Antonio
AU - Torrielli, A.
PY - 2001
Y1 - 2001
N2 - We perform a perturbative O(g4) Wilson loop calculation for the U(N) Yang–Mills theory defined on non-commutative one space–one time dimensions. We choose the light-cone gauge and compare the results obtained when using the Wu–Mandelstam–Leibbrandt (WML) and the Cauchy principal value (PV) prescription for the vector propagator. In the WML case the θ-dependent term is well- defined and regular in the limit θ → 0, where the commutative theory is recovered. In the PV case, unexpectedly, the result differs from the WML one only by the addition of two singular terms with a trivial θ-dependence. We find this feature intriguing, when remembering that, in ordinary theories on compact manifolds, the difference between the two cases can be traced back to the contribution of topological excitations. Exponentiation (at O(g4)) does not occur, signalling a difficulty of the theory with respect to (perturbative) unitarity.
AB - We perform a perturbative O(g4) Wilson loop calculation for the U(N) Yang–Mills theory defined on non-commutative one space–one time dimensions. We choose the light-cone gauge and compare the results obtained when using the Wu–Mandelstam–Leibbrandt (WML) and the Cauchy principal value (PV) prescription for the vector propagator. In the WML case the θ-dependent term is well- defined and regular in the limit θ → 0, where the commutative theory is recovered. In the PV case, unexpectedly, the result differs from the WML one only by the addition of two singular terms with a trivial θ-dependence. We find this feature intriguing, when remembering that, in ordinary theories on compact manifolds, the difference between the two cases can be traced back to the contribution of topological excitations. Exponentiation (at O(g4)) does not occur, signalling a difficulty of the theory with respect to (perturbative) unitarity.
KW - wilson loop
KW - wilson loop
UR - http://hdl.handle.net/10807/7694
UR - http://www.sciencedirect.com/science/article/pii/s0550321301004771
U2 - 10.1016/S0550-3213(01)00477-1
DO - 10.1016/S0550-3213(01)00477-1
M3 - Article
SN - 0550-3213
SP - 308
EP - 320
JO - Nuclear Physics B
JF - Nuclear Physics B
ER -