TY - JOUR
T1 - Perturbations of nonsmooth symmetric nonlinear eigenvalue problems
AU - Degiovanni, Marco
AU - Radulescu, Vicentiu
PY - 1999
Y1 - 1999
N2 - We consider a symmetric semilinear boundary value problem having infinitely many solutions. We prove that, if we perturb this problem in a non-symmetric way, then the number of solutions goes to infinity as the perturbation tends to zero. The growth conditions on the nonlinearities do not ensure the smoothness of the associated functional.
AB - We consider a symmetric semilinear boundary value problem having infinitely many solutions. We prove that, if we perturb this problem in a non-symmetric way, then the number of solutions goes to infinity as the perturbation tends to zero. The growth conditions on the nonlinearities do not ensure the smoothness of the associated functional.
KW - Nonlinear elliptic equations
KW - Variational methods
KW - Nonlinear elliptic equations
KW - Variational methods
UR - https://publicatt.unicatt.it/handle/10807/312925
UR - https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=0033177053&origin=inward
UR - https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0033177053&origin=inward
U2 - 10.1016/S0764-4442(00)88567-5
DO - 10.1016/S0764-4442(00)88567-5
M3 - Article
SN - 0764-4442
VL - 329
SP - 281
EP - 286
JO - COMPTES RENDUS DE L'ACADÉMIE DES SCIENCES. SÉRIE 1, MATHÉMATIQUE
JF - COMPTES RENDUS DE L'ACADÉMIE DES SCIENCES. SÉRIE 1, MATHÉMATIQUE
IS - 4
ER -