Periodic orbits and their bifurcations in 3-D maps with separate third iterate

Anna Agliari, Daniéle Fournier-Prunaret, Abdel Kaddous Taha

Risultato della ricerca: Contributo in libroChapter

1 Citazioni (Scopus)

Abstract

We consider a class of three-dimensional maps T having the property that their third iterate has separate components. We show that the cycles of T can be obtained by those of a one-dimensional map (one of the components of T 3) and we give a complete classification of such cycles. The local bifurcations of the cycles of T are studied as well, showing that they are of co-dimension 3, since at the bifurcation value three eigenvalues simultaneously cross the unit circle. To illustrate the obtained results we consider as an example a delayed logistic map.
Lingua originaleEnglish
Titolo della pubblicazione ospiteGlobal Analysis of Dynamic Models in Economics and Finance. Essays in Honour of Laura Gardini
EditorG.I. Bischi, C. Chiarella, I. Sushko
Pagine397-427
Numero di pagine31
DOI
Stato di pubblicazionePubblicato - 2012

Keywords

  • 3D maps
  • Delayed logistic map
  • Local bifurcations
  • Multistability

Fingerprint

Entra nei temi di ricerca di 'Periodic orbits and their bifurcations in 3-D maps with separate third iterate'. Insieme formano una fingerprint unica.

Cita questo