Penalized model-based clustering for three-way data structures = Clustering penalizzato basato sul modello per dati con struttura tridimensionale

Andrea Cappozzo*, Alessandro Casa, Michael Fop

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in libroContributo a convegno

Abstract

Recently, there has been an increasing interest in developing statistical methods able to find groups in matrix-valued data. To this extent, matrix Gaussian mixture models (MGMM) provide a natural extension to the popular model-based clustering based on Normal mixtures. Unfortunately, the overparametrization issue, already affecting the vector-variate framework, is further exacerbated when it comes to MGMM, since the number of parameters scales quadratically with both row and column dimensions. In order to overcome this limitation, the present paper introduces a sparse model-based clustering approach for three-way data structures. By means of penalized estimation, our methodology shrinks the estimates towards zero, achieving more stable and parsimonious clustering in high dimensional scenarios. An application to satellite images underlines the benefits of the proposed method.
Lingua originaleEnglish
Titolo della pubblicazione ospiteBook of Short Papers SIS 2021
Pagine758-763
Numero di pagine6
Stato di pubblicazionePubblicato - 2021
EventoScientific Meeting of the Italian Statistical Society - Pisa
Durata: 21 giu 202125 giu 2021

Convegno

ConvegnoScientific Meeting of the Italian Statistical Society
CittàPisa
Periodo21/6/2125/6/21

Keywords

  • Model based clustering
  • Matrix distribution
  • Sparse matrix estimation
  • penalized likelihood
  • EM-algorithm

Fingerprint

Entra nei temi di ricerca di 'Penalized model-based clustering for three-way data structures = Clustering penalizzato basato sul modello per dati con struttura tridimensionale'. Insieme formano una fingerprint unica.

Cita questo