Parsimonious Mixtures of Matrix-Variate Shifted Exponential Normal Distributions

Salvatore D. Tomarchio*, Luca Bagnato, Antonio Punzo

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in libroChapter

Abstract

Finite mixtures of matrix-variate distributions constitute a powerful model-based clustering device. One serious issue of these models is the potentially high number of parameters to be estimated. Thus, in this work we introduce a family of 196 parsimonious mixture models based on the matrix-variate shifted exponential normal distribution, an elliptical heavy-tailed generalization of the matrix-variate normal distribution. Parsimony is introduced in a twofold manner: (i) by using the eigendecomposition of the components scale matrices and (ii) by allowing the components tailedness parameter to be tied across the groups. A further characteristic of the proposed models relies on the more flexible tail behavior with respect to existing parsimonious matrix-variate normal mixtures, thus allowing for a better modeling of datasets having atypical observations. Parameter estimation is obtained by using an ECM algorithm. The proposed models are then fitted to a real dataset along with parsimonious matrix-variate normal mixtures for comparison purposes.
Lingua originaleEnglish
Titolo della pubblicazione ospiteStudies in Classification, Data Analysis, and Knowledge Organization
EditorLupparelli M., Rampichini C., Rocco E., Vichi M. Grilli L.
Pagine177-186
Numero di pagine10
DOI
Stato di pubblicazionePubblicato - 2023

Serie di pubblicazioni

NomeSTUDIES IN CLASSIFICATION, DATA ANALYSIS, AND KNOWLEDGE ORGANIZATION

Keywords

  • Clustering
  • Parsimony
  • Mixture models
  • Matrix-variate

Fingerprint

Entra nei temi di ricerca di 'Parsimonious Mixtures of Matrix-Variate Shifted Exponential Normal Distributions'. Insieme formano una fingerprint unica.

Cita questo