Parameter Choice, Stability and Validity for Robust Cluster Weighted Modeling

Andrea Cappozzo, Luis Angel Garcìa Escudero, Francesca Greselin*, Agustìn Mayo-Iscar

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolopeer review

Abstract

Statistical inference based on the cluster weighted model often requires some subjective judgment from the modeler. Many features influence the final solution, such as the number of mixture components, the shape of the clusters in the explanatory variables, and the degree of heteroscedasticity of the errors around the regression lines. Moreover, to deal with outliers and contamination that may appear in the data, hyper-parameter values ensuring robust estimation are also needed. In principle, this freedom gives rise to a variety of “legitimate” solutions, each derived by a specific set of choices and their implications in modeling. Here we introduce a method for identifying a “set of good models” to cluster a dataset, considering the whole panorama of choices. In this way, we enable the practitioner, or the scientist who needs to cluster the data, to make an educated choice. They will be able to identify the most appropriate solutions for the purposes of their own analysis, in light of their stability and validity.
Lingua originaleInglese
pagine (da-a)602-615
Numero di pagine14
RivistaStats
Volume4
Numero di pubblicazione3
DOI
Stato di pubblicazionePubblicato - 2021

All Science Journal Classification (ASJC) codes

  • Statistica e Probabilità

Keywords

  • cluster-weighted modeling
  • constrained estimation
  • eigenvalue constraint
  • model-based clustering
  • monitoring
  • outliers
  • robust estimation
  • trimmed BIC

Fingerprint

Entra nei temi di ricerca di 'Parameter Choice, Stability and Validity for Robust Cluster Weighted Modeling'. Insieme formano una fingerprint unica.

Cita questo