Abstract
Let G be a p-solvable group, where p is a prime. We prove that the p-length of G is less or equal then the number of distinct irreducible character degrees of G not divisible by p. Furthermore, we prove that the result still holds if we impose some restriction on the field of values of the characters. In particular, if p=2, we can consider only rational-valued characters.
Lingua originale | English |
---|---|
pagine (da-a) | 454-462 |
Numero di pagine | 9 |
Rivista | Journal of Algebra |
Volume | 544 |
DOI | |
Stato di pubblicazione | Pubblicato - 2020 |
Keywords
- Character degrees
- Rational-valued characters
- p'-rational characters
- p-length