Optimization model of phenolics encapsulation conditions for biofortification in fatty acids of animal food products

Roberta Tolve, Fernanda Galgano, Nicola Condelli, Nazarena Cela, Luigi Lucini, Marisa Carmela Caruso

Risultato della ricerca: Contributo in rivistaArticolo in rivista

Abstract

The nutritional quality of animal products is strongly related to their fatty acid content and composition. Nowadays, attention is paid to the possibility of producing healthier foods of animal origin by intervening in animal feed. In this field, the use of condensed tannins as dietary supplements in animal nutrition is becoming popular due to their wide range of biological effects related, among others, to their ability to modulate the rumen biohydrogenation and biofortify, through the improvement of the fatty acids profile, the derivate food products. Unfortunately, tannins are characterized by strong astringency and low bioavailability. These disadvantages could be overcome through the microencapsulation in protective matrices. With this in mind, the optimal conditions for microencapsulation of a polyphenolic extract rich in condensed tannins by spray drying using a blend of maltodextrin (MD) and gum Arabic (GA) as shell material were investigated. For this purpose, after the extract characterization, through spectrophotometer assays and ultra-high-performance liquid chromatography-quadrupole time-of-flight (UHPLC-QTOF) mass spectrometry, a central composite design (CCD) was employed to investigate the combined effects of core:shell and MD:GA ratio on the microencapsulation process. The results obtained were used to develop second-order polynomial regression models on different responses, namely encapsulation yield, encapsulation efficiency, loading capacity, and tannin content. The formulation characterized by a core:shell ratio of 1.5:5 and MD:GA ratio of 4:6 was selected as the optimized one with a loading capacity of 17.67%, encapsulation efficiency of 76.58%, encapsulation yield of 35.69%, and tannin concentration of 14.46 g/100 g. Moreover, in vitro release under varying pH of the optimized formulation was carried out with results that could improve the use of microencapsulated condensed tannins in animal nutrition for the biofortification of derivates.
Lingua originaleEnglish
pagine (da-a)881-881
Numero di pagine1
RivistaFoods
Volume10
DOI
Stato di pubblicazionePubblicato - 2021

Keywords

  • Biofortification
  • Central composite design
  • Condensed tannins
  • Dairy products
  • Fatty acids profile
  • Gum Arabic
  • Maltodextrin
  • Microencapsulation
  • Milk
  • Phenolic compounds

Fingerprint

Entra nei temi di ricerca di 'Optimization model of phenolics encapsulation conditions for biofortification in fatty acids of animal food products'. Insieme formano una fingerprint unica.

Cita questo