On the Spectral Decomposition in Normal Discriminant Analysis

Luca Bagnato, Francesca Greselin, Antonio Punzo

Risultato della ricerca: Contributo in rivistaArticolo in rivistapeer review

10 Citazioni (Scopus)

Abstract

This paper enlarges the covariance configurations, on which the classical linear discriminant analysis is based, by considering the four models arising from the spectral decomposition when eigenvalues and/or eigenvectors matrices are allowed to vary or not between groups. Similarly to the classical approach, the assessment of these configurations is accomplished via a test on the training set. The discrimination rule is then built upon the configuration provided by the test, considering or not the unlabelled data. Numerical experiments, on simulated and real data, have been performed to evaluate the gain of our proposal with respect to the linear discriminant analysis.
Lingua originaleEnglish
pagine (da-a)1471-1489
Numero di pagine19
RivistaCOMMUNICATIONS IN STATISTICS. SIMULATION AND COMPUTATION
Volume43
DOI
Stato di pubblicazionePubblicato - 2014

Keywords

  • CEM algorithm
  • EM algorithm
  • Mixture models
  • Normal discriminant analysis

Fingerprint

Entra nei temi di ricerca di 'On the Spectral Decomposition in Normal Discriminant Analysis'. Insieme formano una fingerprint unica.

Cita questo