On the regularity of selections and on Minty points of generalized monotone set-valued maps

Monica Bianchi, N. Hadjisavvas, R. Pini*

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolo

Abstract

In this paper we deal with set-valued maps T : X ⇒ X∗ defined on a Banach space X, that are generalized monotone in the sense of Karamardian. Under various continuity assumptions on T, we investigate the regularity of suitable selections of the set-valued map R++T that shares with T the generalized monotonicity properties. In particular, we show that for every quasimonotone set-valued map T satisfying the Aubin property around (y, y∗) ∈ gph(T) with y∗ ̸= 0 there exist locally Lipschitz selections of R++T \ {0}. In the last part some notions of Minty points of T are introduced, and\r\ntheir relationship with zeros as well as effective zeros of T is discussed; a correlation is established between these concepts and the broader context of the generalized monotonicity of the map T.
Lingua originaleInglese
pagine (da-a)N/A-N/A
RivistaJournal of Mathematical Analysis and Applications
Volume535
Numero di pubblicazione2
DOI
Stato di pubblicazionePubblicato - 2024

All Science Journal Classification (ASJC) codes

  • Analisi
  • Matematica Applicata

Keywords

  • Aubin property
  • Minty points
  • Pseudomonotone-set valued maps
  • Quasimonotone-set valued maps
  • Selections
  • Sign-continuity

Fingerprint

Entra nei temi di ricerca di 'On the regularity of selections and on Minty points of generalized monotone set-valued maps'. Insieme formano una fingerprint unica.

Cita questo