Abstract
Let X be a reflexive Banach space and f a Gâteaux differentiable function with f' demicontinuous and locally of class (S)_+. We prove that each isolated critical point of f has critical groups of finite type and that the Poincaré-Hopf formula holds. We also show that quasilinear elliptic equations at critical growth are covered by this result.
Lingua originale | English |
---|---|
pagine (da-a) | 679-699 |
Numero di pagine | 21 |
Rivista | Advanced Nonlinear Studies |
Volume | 9 |
DOI | |
Stato di pubblicazione | Pubblicato - 2009 |
Keywords
- Critical point theory
- Equazioni differenziali
- Teoria dei punti critici