On the geometry of some unitary Riemann surface braid group representations and Laughlin-type wave functions

Mauro Spera*

*Autore corrispondente per questo lavoro

Risultato della ricerca: Contributo in rivistaArticolopeer review

3 Citazioni (Scopus)

Abstract

In this note we construct the simplest unitary Riemann surface braid \r\ngroup representations geometrically by means of stable holomorphic vector bundles over complex tori and the prime form on Riemann surfaces. \r\nGeneralised Laughlin wave functions are then introduced. The genus one \r\ncase is discussed in some detail also with the help of noncommutative geometric tools, and an application of Fourier-Mukai-Nahm techniques is also given, explaining the emergence of an intriguing Riemann surface braid group duality.
Lingua originaleInglese
pagine (da-a)120-140
Numero di pagine21
RivistaJournal of Geometry and Physics
Volume2015
Numero di pubblicazioneN/A
DOI
Stato di pubblicazionePubblicato - 2015

All Science Journal Classification (ASJC) codes

  • Fisica Matematica
  • Fisica e Astronomia Generali
  • Geometria e Topologia

Keywords

  • Laughlin wave functions
  • Riemann surface braid groups
  • noncommutative geometry.
  • prime form
  • stable holomorphic vector bundles

Fingerprint

Entra nei temi di ricerca di 'On the geometry of some unitary Riemann surface braid group representations and Laughlin-type wave functions'. Insieme formano una fingerprint unica.

Cita questo